нет
REFERENCES1. Ministry of the Republic of Kazakhstan news dated October 10, 2023. 2475 organ transplants conducted in Kazakhstan over the last 10 years. В КАЗАХСТАНЕ ПРОВЕДЕНО 2475 ТРАНСПЛАНТАЦИЙ ОРГАНОВ ЗА ПОСЛЕДНИЕ 10 ЛЕТ 2. Baymakhanov B.B., Chormanov A.T., Madadov I.K., Belgibayev E.B., Syrimov ZH.M., Dabyltayeva K.S., Nabiyev E.S., Saduakas N.T., Baiyz A.ZH., Aipov B.R. Graft survival after kidney transplantation from living-related and cadaveric donors// BULLETIN OF SURGERY IN KAZAKHSTAN. 2021. - № 2. – С.5-15. vestnik_2_2021.pdf 3. Starzl T.E. History of Clinical Transplantation //World journal of surgery. – 2000. – V.24 (7). P.759-782. https://doi.org/10.1007/s002680010124 4. Sabbatini M. et al. Nutritional management in renal transplant recipients: a transplant team opportunity to improve graft survival. // Nutr. Metab. Cardiovasc. – 2019. - Dis. 29. – P. 319–324. https://doi.org/10.1016/j.numecd.2019.01.002 5. Vadcharavivad S., Saengram W., Phupradit A., Poolsup N. & Chancharoenthana W. Tacrolimus in Kidney Transplantation: A Systematic Review and Meta-analysis of Observational Studies //Drugs. - 2019. - Volume 79. – P. 1947–1962. https://doi.org/10.1007/s40265-019-01217-76. Degraeve A.L., Bindels L.B, Haufroid V., Moudio S., Boland L., Delongie K.A., Dewulf J. P., Eddour D.C., Mourad M., Elens L. Tacrolimus Pharmacokinetics is Associated with Gut Microbiota Diversity in Kidney Transplant Patients: Results from a Pilot Cross-Sectional Study // Clinical pharmacology@ Therapeutics. - 2024.-V. 115(1). – P.104-115. https://doi.org/10.1002/cpt.30777. Kim, Joshua S.А., Sze С., Barbar, Tarekc, Lee, John R. New insights into the microbiome in kidney transplantation //Current Opinion in Organ Transplantation. 2021. - 26(6). – p. 582-586. https://doi.org/10.1097/mot.0000000000000921 8. Calne R. Y. Cyclosporin in cadaveric renal transplantation: 3-year follow-up of a European multicentre trial / Calne R. Y., Wood A. J. //The Lancet. – 1985. – Vol. 326. – №. 8454. – P. 549. 97. 9. Shumakov V.I. Achievements and prospects for the development of transplantology and artificial organs in Russia /V.I. Shumakov // Bulletin of Transplantology and Artificial Organs– 2005. – № 3. – P. 6-9. 98. 10. Starzl T. E. FK 506 for liver, kidney, and pancreas transplantation /Starzl, T., Fung, J., Venkataramman, R [et al.] //The Lancet. – 1989. – Vol. 334. – №. 8670. – P. 1000-1004.11. Hošková L. Pathophysiological mechanisms of calcineurin inhibitor-induced nephrotoxicity and arterial hypertension /Hošková, L., Málek, I., Kopkan, L. [et al.] //Physiological research. – 2017. – Vol. 66. – №. 2. – P. 167. 100. 12. Kamińska D. The influence of warm ischemia elimination on kidney injury during transplantation–clinical and molecular study /Kamińska, D., KościelskaKasprzak, K., Chudoba, P [et al.] //Scientific Reports. – 2016. – Vol. 6. – №. 1. – P. 1-10.13. Webster A.C.. Woodroffe R.C., Taylor R.S., Chapman J.R., Craig J. C.Tacrolimus versus ciclosporin as primary immunosuppression for kidney transplant recipients: meta-analysis and meta-regression of randomised trial data // BMJ. – 2005. –.331 doi: https://doi.org/10.1136/bmj.38569.471007.AE 14. Kasiske B. L. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary /Kasiske, B. L., Zeier, M. G., Chapman, J. R. [et al.] //Kidney international. – 2010. – Vol. 77. – №. 4. – P. 299-311.15. Yu M. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation / Yu, M., Liu, M., Zhang, W. [et al.] //Current drug metabolism. – 2018. – Vol. 19. – №. 6. – P. 513-522.16. Azarfar A. Comparison of tacrolimus and cyclosporine for immunosuppression after renal transplantation: An updated systematic review and meta-analysis /Azarfar, A., Ravanshad, Y., Mehrad-Majd, H. [et al.] //Saudi journal of kidney diseases and transplantation: an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia. – 2018. – Vol. 29. – №. 6. – P. 1376-1385.17. Liu J. Tacrolimus versus cyclosporine as primary immunosuppressant after renal transplantation: a meta-analysis and economics evaluation / Liu, J. Y., You, R. X., Guo, M. [et al.] //American journal of therapeutics. – 2016. – Vol. 23. – №. 3. – P. e810-e824.18. Ravanshad Y. A comparison between tacrolimus and cyclosporine as immunosuppression after renal transplantation in children, a meta-analysis and systematic review /Ravanshad, Y., Azarfar, A., Ravanshad, S. [et al.] //Iranian Journal of Kidney Diseases. – 2020. – Vol. 14. – №. 2. – P. 145.19. Chen L., Prasad G.V. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment // Pharmacogenomics And Personalized Medicine Journal. – 2018. – Volume 11. – P.23—33. DOI https://doi.org/10.2147/PGPM.S10771020. Shuker N. Intra-patient variability in tacrolimus exposure: causes, consequences for clinical management / Shuker N., van Gelder T., Hesselink D. A. //Transplantation Reviews. – 2015. – Vol. 29. – №. 2. – P. 78-84.21. Birdwell KA, Decker B, Barbarino JM, et al. Clinical pharmacogenetics implementation consortium (CPIC) guidelines for CYP3A5 genotype and tacrolimus dosing. //Clin Pharmacol Ther. – 2015. - 98(1). – Р. 19–24. https://doi.org/10.1002/cpt.113 22. Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. //Pharmacogenomics J. -2015. - 15(1). –Р.38–48. https://doi.org/10.1038/tpj.2014.38 23. Tang JT, Andrew LM, van Gelder T, et al. Pharmacogenetics aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations// Expert Opin Drug Metab Toxicol. – 2016. - 12(5). – Р.555–565. https://doi.org/10.1517/17425255.2016.1170808 24. Chen P, Li J, Li J, et al. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients. //J Clin Pharm Ther. – 2017. - 42(1). Р.93–97. https://doi.org/10.1111/jcpt.12480 25. Sallustio B. C. Tacrolimus dose, blood concentrations and acute nephrotoxicity, but not CYP3A5/ABCB1 genetics, are associated with allograft tacrolimus concentrations in renal transplant recipients / Sallustio, B. C., Noll, B. D., Hu, R. [et al.] //British Journal of Clinical Pharmacology. – 2021. – Vol. 87. – №. 10. – P. 3901-3909. https://doi.org/10.1111/bcp.14806 26. Vanhove T. Clinical determinants of calcineurin inhibitor disposition: a mechanistic review / Vanhove T., Annaert P., Kuypers D. R. J. //Drug metabolism reviews. – 2016. – Vol. 48. – №. 1. – P. 88-112. https://doi.org/10.3109/03602532.2016.1151037 27. Xia T. Risk factors for calcineurin inhibitor nephrotoxicity after renal transplantation: a systematic review and meta-analysis / Xia, T., Zhu, S., Wen, Y. [et al.] //Drug Design, Development and Therapy. – 2018. – Vol. 12. – P. 417. https://doi.org/10.2147/dddt.s149340 28. Shuker N. A randomized controlled trial comparing the efficacy of Cyp3a5 genotype‐ based with body‐ weight‐ based tacrolimus dosing after living donor kidney transplantation / Shuker, N., Bouamar, R., van Schaik, R. H. [et al.] //American Journal of Transplantation. – 2016. – Vol. 16. – №. 7. – P. 2085-2096. https://doi.org/10.1111/ajt.13691 29. Birdwell K. A. Supplemental Material Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing / Birdwell, K. A., Decker, B., Barbarino, J. M. [et al.] //Clinical Pharmacology & Therapeutics. – 2015. – Т. 98. – №. 1. – С. 19-24. https://doi.org/10.1002/cpt.113 30. Hu R. CYP3A5* 3 and ABCB1 61A> G significantly influence dose‐ adjusted trough blood tacrolimus concentrations in the first three months post‐ kidney transplantation / Hu, R., Barratt, D. T., Coller, J. K. [et al.] //Basic & Clinical Pharmacology & Toxicology. – 2018. – Vol. 123. – №. 3. – P. 320-326 https://doi.org/10.1111/bcpt.13016 31. Kuypers D. R. J. Tacrolimus dose requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated nephrotoxicity in renal allograft recipients / Kuypers, D. R., Naesens, M., de Jonge, H. [et al.] //Therapeutic drug monitoring. – 2010. – Vol. 32. – №. 4. – P. 394-404.32. Thervet E. Optimization of initial tacrolimus dose using pharmacogenetic testing / Thervet, E., Loriot, M. A., Barbier, S. [et al.] //Clinical Pharmacology & Therapeutics. – 2010. – Vol. 87. – №. 6. – P. 721-726. 33. Thölking G. A low tacrolimus concentration/dose ratio increases the risk for the development of acute calcineurin inhibitor-induced nephrotoxicity / Thölking, G., Schütte-Nütgen, K., Schmitz, J. [et al.] //Journal of clinical medicine. – 2019. – Vol. 8. – №. 10. – P. 1586.34. Zegarska J. Tacrolimus metabolite M-III may have nephrotoxic and myelotoxic effects and increase the incidence of infections in kidney transplant recipients / Zegarska, J., Hryniewiecka, E., Zochowska, D. [et al.] //Transplantation Proceedings. – Elsevier, 2016. – Vol. 48. – №. 5. – P. 1539-1542. 35. Ro H. The tacrolimus metabolism affect post‐ transplant outcome mediating acute rejection and delayed graft function: analysis from Korean Organ Transplantation Registry data / Ro, H., Jeong, J. C., Kong, J. M. [et al.] //Transplant International. – 2021. – Vol. 34. – №. 1. – P. 163-174.36. West-Thielke P. What's in a High Dose? An Analysis of Tacrolimus Pharmacokinetic Parameters in Rapid Metabolizers / West-Thielke, P., Maldonado, A., Patel, S. J. [et al.] //American journal of transplantation. – 2019. – Vol. 19. – P. 360-361. 37. Krämer B. K. Efficacy of prolonged-and immediate-release tacrolimus in kidney transplantation: a pooled analysis of two large, randomized, controlled trials / Krämer, B. K., Albano, L., Banas, B. [et al.] //Transplantation Proceedings. – Elsevier, 2017. – Vol. 49. – №. 9. – P. 2040-2049. 38. Glowacki F. Influence of cytochrome P450 3A5 (CYP3A5) genetic polymorphism on the pharmacokinetics of the prolonged-release, once-daily formulation of tacrolimus in stable renal transplant recipients / Glowacki, F., Lionet, A., Hammelin, J. P. [et al.] //Clinical pharmacokinetics. – 2011. – Vol. 50. – №. 7. – P. 451-459. 39. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 genotype and Tacrolimus Dosing (July 2015) https://cpicpgx.org/guidelines/guideline-for-tacrolimus-and-cyp3a5/ 40. Barry A, Levine M. A systematic review of the effect of CYP3A5 genotype on the apparent oral clearance of tacrolimus in renal transplant recipients.// Ther Drug Monit. -2010. -32(6). – P.708–714. https://doi.org/10.1097/ftd.0b013e3181f3c063 41. Rojas L, Neumann I, Herrero MJ, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. //Pharmacogenomics J. – 2015. - 15(1). – P.38–48. https://doi.org/10.1038/tpj.2014.3842. Chen P, Li J, Li J, et al. Dynamic effects of CYP3A5 polymorphism on dose requirement and trough concentration of tacrolimus in renal transplant recipients.// J Clin Pharm Ther. – 2017. - 42(1). – P.93–97. https://doi.org/10.1111/jcpt.1248043. Boughton O, Borgulya G, Cecconi M, Frederick S, Moreton-Clack M, MacPhee IA. A published pharmacogenetic algorithm was poorly predictive of tacrolimus clearance in an independent cohort of renal transplant recipients. //Br J Clin Pharmacol. – 2013. - 76(3). – P. 425–431. https://doi.org/10.1111/bcp.12076 44. Niioka T, Kagya H, Saito M, et al. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage postrenal transplantation. //Int J Mol Sci. – 2015. - 16(1). – P.1840–1854. https://doi.org/10.3390/ijms16011840 45. Chandel N, Aggarwal PK, Minz M, Sakhuja V, Kohli KK, Jha V. CYP3A5*1/*3 genotype influences the blood concentration of tacrolimus in response to metabolic inhibition by ketoconazole. //Pharmacogenet Genomics. – 2009. - 19(6). – P.458–463. https://doi.org/10.1097/fpc.0b013e32832bd085 46. Satoh S, Saito M, Inoue T, et al. CYP3A5 *1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in Japanese renal transplant recipients. //Eur J Clin Pharmacol. – 2009. - 65(5). – P.473–481. https://doi.org/10.1007/s00228-008-0606-3