No conflicts of interests
Senior researcher of Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
Assistant of the Department of Internal Medicine with the courses of gastroenterology, endocrinology and pulmonology, NJSC Medical University Astana, Astana, Kazakhstan.
1. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. Geneva, World Health Organization, 2020. [Electronic resource].2. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533. doi:10.1038/s41586-021-03392-83. C.J. Estol M.S.S. (eds). Atherosclerosis: The 21st Century Epidemic. Proceedings of Working Group 31 May - 1 June 2010. Scripta Varia 116 | Vatican City, 2011 pp. 199 | ISBN 978-88-7761-102-4.4. Fan J, Watanabe T. Atherosclerosis: Known and unknown. Pathol Int. 2022;72(3):151-160. doi:10.1111/pin.132025. Lechner K, von Schacky C, McKenzie AL, et al. Lifestyle factors and high-risk atherosclerosis: Pathways and mechanisms beyond traditional risk factors. Eur J Prev Cardiol. 2020;27(4):394-406. doi:10.1177/20474873198694006. Rahman MdM, Islam F, -Or-Rashid MdH, et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.9035707. Verhaar BJH, Prodan A, Nieuwdorp M, Muller M. Gut Microbiota in Hypertension and Atherosclerosis: A Review. Nutrients. 2020;12(10):2982. doi:10.3390/nu121029828. Salazar J, Morillo V, Suárez MK, et al. Role of Gut Microbiome in Atherosclerosis: Molecular and Therapeutic Aspects. Curr Cardiol Rev. 2023;19(4). doi:10.2174/1573403X196662302021645249. Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: An overview of systematic reviews. Obesity Reviews. 2022;23(4). doi:10.1111/obr.1340910. Singh RK, Chang HW, Yan D, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med. 2017;15(1):73. doi:10.1186/s12967-017-1175-y11. Lynch S V., Pedersen O. The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine. 2016;375(24):2369-2379. doi:10.1056/NEJMra160026612. Rahman MdM, Islam F, -Or-Rashid MdH, et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.90357013. Witkowski M, Weeks TL, Hazen SL. Gut Microbiota and Cardiovascular Disease. Circ Res. 2020;127(4):553-570. doi:10.1161/CIRCRESAHA.120.31624214. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461-472. doi:10.1007/s11154-019-09512-015. Arnold JW, Roach J, Azcarate-Peril MA. Emerging Technologies for Gut Microbiome Research. Trends Microbiol. 2016;24(11):887-901. doi:10.1016/j.tim.2016.06.00816. Proctor LM, Creasy HH, Fettweis JM, et al. The Integrative Human Microbiome Project. Nature. 2019;569(7758):641-648. doi:10.1038/s41586-019-1238-817. Gill SR, Pop M, DeBoy RT, et al. Metagenomic Analysis of the Human Distal Gut Microbiome. Science (1979). 2006;312(5778):1355-1359. doi:10.1126/science.112423418. Benson DA, Cavanaugh M, Clark K, et al. GenBank. Nucleic Acids Res. 2012;41(D1):D36-D42. doi:10.1093/nar/gks119519. Ng PC, Kirkness EF. Whole Genome Sequencing. In: ; 2010:215-226. doi:10.1007/978-1-60327-367-1_1220. Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut Microbiota and Inflammation: An Overview. Int J Environ Res Public Health. 2020;17(20):7618. doi:10.3390/ijerph1720761821. Rahman MdM, Islam F, -Or-Rashid MdH, et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front Cell Infect Microbiol. 2022;12. doi:10.3389/fcimb.2022.90357022. Cretoiu D, Ionescu RF, Enache RM, Cretoiu SM, Voinea SC. Gut Microbiome, Functional Food, Atherosclerosis, and Vascular Calcifications—Is There a Missing Link? Microorganisms. 2021;9(9):1913. doi:10.3390/microorganisms909191323. Mao Y, Kong C, Zang T, et al. Impact of the gut microbiome on atherosclerosis. mLife. 2024;3(2):167-175. doi:10.1002/mlf2.1211024. Garshick MS, Nikain C, Tawil M, et al. Reshaping of the gastrointestinal microbiome alters atherosclerotic plaque inflammation resolution in mice. Sci Rep. 2021;11(1):8966. doi:10.1038/s41598-021-88479-y25. Lewis C V., Taylor WR. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. American Journal of Physiology-Heart and Circulatory Physiology. 2020;319(6):H1227-H1233. doi:10.1152/ajpheart.00612.202026. Tang WHW, Kitai T, Hazen SL. Gut Microbiota in Cardiovascular Health and Disease. Circ Res. 2017;120(7):1183-1196. doi:10.1161/CIRCRESAHA.117.30971527. Liu H, Chen X, Hu X, et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019;7(1):68. doi:10.1186/s40168-019-0683-928. Jie Z, Xia H, Zhong SL, et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. doi:10.1038/s41467-017-00900-129. Al Samarraie A, Pichette M, Rousseau G. Role of the Gut Microbiome in the Development of Atherosclerotic Cardiovascular Disease. Int J Mol Sci. 2023;24(6):5420. doi:10.3390/ijms2406542030. Wu WK, Ivanova EA, Orekhov AN. Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Semin Cancer Biol. 2021;70:85-97. doi:10.1016/j.semcancer.2020.06.01731. Laurent S, Bruno RM. Gut microbiome composition, a third player in the inflammation–arterial stiffness relationship. Eur Heart J. 2018;39(25):2398-2400. doi:10.1093/eurheartj/ehy30032. Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The Gut Microbiota and Inflammation: An Overview. Int J Environ Res Public Health. 2020;17(20):7618. doi:10.3390/ijerph1720761833. Chan YK, Brar MS, Kirjavainen P V., et al. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE−/− mice. BMC Microbiol. 2016;16(1):264. doi:10.1186/s12866-016-0883-434. Lanter BB, Sauer K, Davies DG. Bacteria Present in Carotid Arterial Plaques Are Found as Biofilm Deposits Which May Contribute to Enhanced Risk of Plaque Rupture. mBio. 2014;5(3). doi:10.1128/mBio.01206-1435. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proceedings of the National Academy of Sciences. 2011;108(supplement_1):4592-4598. doi:10.1073/pnas.101138310736. van den Munckhof ICL, Kurilshikov A, ter Horst R, et al. Role of gut microbiota in chronic low‐grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obesity Reviews. 2018;19(12):1719-1734. doi:10.1111/obr.1275037. Kasselman LJ, Vernice NA, DeLeon J, Reiss AB. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis. 2018;271:203-213. doi:10.1016/j.atherosclerosis.2018.02.03638. Szabo H, Hernyes A, Piroska M, et al. Association between Gut Microbial Diversity and Carotid Intima-Media Thickness. Medicina (B Aires). 2021;57(3):195. doi:10.3390/medicina5703019539. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32(1):39-46. doi:10.1007/s00380-016-0841-y40. Guevara‐Cruz M, Flores‐López AG, Aguilar‐López M, et al. Improvement of Lipoprotein Profile and Metabolic Endotoxemia by a Lifestyle Intervention That Modifies the Gut Microbiota in Subjects With Metabolic Syndrome. J Am Heart Assoc. 2019;8(17). doi:10.1161/JAHA.119.01240141. Li J, Lin S, Vanhoutte PM, Woo CW, Xu A. Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe −/− Mice. Circulation. 2016;133(24):2434-2446. doi:10.1161/CIRCULATIONAHA.115.01964542. Hasani A, Ebrahimzadeh S, Hemmati F, Khabbaz A, Hasani A, Gholizadeh P. The role of Akkermansia muciniphila in obesity, diabetes and atherosclerosis. J Med Microbiol. 2021;70(10). doi:10.1099/jmm.0.00143543. Jayachandran M, Chung SSM, Xu B. A critical review of the relationship between dietary components, the gut microbe Akkermansia muciniphila , and human health. Crit Rev Food Sci Nutr. 2020;60(13):2265-2276. doi:10.1080/10408398.2019.163278944. Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. J Clin Med. 2021;10(14):3120. doi:10.3390/jcm1014312045. Li C, Stražar M, Mohamed AMT, et al. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell. 2024;187(8):1834-1852.e19. doi:10.1016/j.cell.2024.03.01446. Nesci A, Carnuccio C, Ruggieri V, et al. Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship. Int J Mol Sci. 2023;24(10):9087. doi:10.3390/ijms2410908747. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. doi:10.1186/s40168-019-0704-848. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. Published online June 13, 2018:k2179. doi:10.1136/bmj.k217949. Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cellular and Molecular Life Sciences. 2020;77(14):2751-2769. doi:10.1007/s00018-020-03453-750. Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol. 2023;14. doi:10.3389/fphar.2023.125290751. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. In: ; 2014:91-119. doi:10.1016/B978-0-12-800100-4.00003-952. Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science (1979). 2018;359(6382):1376-1383. doi:10.1126/science.aar331853. Chen W, Zhang S, Wu J, et al. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clinica Chimica Acta. 2020;507:236-241. doi:10.1016/j.cca.2020.04.03754. Ma H, Yang L, Liu Y, et al. Butyrate suppresses atherosclerotic inflammation by regulating macrophages and polarization via GPR43/HDAC-miRNAs axis in ApoE−/− mice. PLoS One. 2023;18(3):e0282685. doi:10.1371/journal.pone.028268555. He J, Zhang P, Shen L, et al. Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int J Mol Sci. 2020;21(17):6356. doi:10.3390/ijms2117635656. Hosseinkhani F, Heinken A, Thiele I, Lindenburg PW, Harms AC, Hankemeier T. The contribution of gut bacterial metabolites in the human immune signaling pathway of non-communicable diseases. Gut Microbes. 2021;13(1). doi:10.1080/19490976.2021.188292757. Zhang D, Jian YP, Zhang YN, et al. Short-chain fatty acids in diseases. Cell Communication and Signaling. 2023;21(1):212. doi:10.1186/s12964-023-01219-958. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N. SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society. 2021;80(1):37-49. doi:10.1017/S002966512000691659. Zhang D, Jian YP, Zhang YN, et al. Short-chain fatty acids in diseases. Cell Communication and Signaling. 2023;21(1):212. doi:10.1186/s12964-023-01219-960. Li M, van Esch BCAM, Henricks PAJ, Folkerts G, Garssen J. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor α-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.0053361. Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms. 2022;10(1):108. doi:10.3390/microorganisms1001010862. Hu T, Wu Q, Yao Q, Jiang K, Yu J, Tang Q. Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Res Rev. 2022;81:101706. doi:10.1016/j.arr.2022.10170663. Tian Q, Leung FP, Chen FM, et al. Butyrate protects endothelial function through PPARδ/miR-181b signaling. Pharmacol Res. 2021;169:105681. doi:10.1016/j.phrs.2021.10568164. Haghikia A, Zimmermann F, Schumann P, et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur Heart J. 2022;43(6):518-533. doi:10.1093/eurheartj/ehab64465. Pagonas N, Seibert FS, Liebisch G, et al. Association of plasma propionate concentration with coronary artery disease in a large cross-sectional study. Front Cardiovasc Med. 2023;10. doi:10.3389/fcvm.2023.106329666. Gątarek P, Kałużna-Czaplińska J. Trimethylamine n-oxide (TMAO) in human health. EXCLI J. 2021;20:301-319. doi:10.17179/excli2020-323967. Velasquez M, Ramezani A, Manal A, Raj D. Trimethylamine N-Oxide: The Good, the Bad and the Unknown. Toxins (Basel). 2016;8(11):326. doi:10.3390/toxins811032668. Koeth RA, Levison BS, Culley MK, et al. γ-Butyrobetaine Is a Proatherogenic Intermediate in Gut Microbial Metabolism of L-Carnitine to TMAO. Cell Metab. 2014;20(5):799-812. doi:10.1016/j.cmet.2014.10.00669. Guasch‐Ferré M, Hu FB, Ruiz‐Canela M, et al. Plasma Metabolites From Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention With Mediterranean Diet) Study. J Am Heart Assoc. 2017;6(11). doi:10.1161/JAHA.117.00652470. Bennett BJ, Vallim TQ de A, Wang Z, et al. Trimethylamine-N-Oxide, a Metabolite Associated with Atherosclerosis, Exhibits Complex Genetic and Dietary Regulation. Cell Metab. 2013;17(1):49-60. doi:10.1016/j.cmet.2012.12.01171. Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585-1595. doi:10.1016/j.cell.2015.11.05572. Janeiro M, Ramírez M, Milagro F, Martínez J, Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10(10):1398. doi:10.3390/nu1010139873. El Hage R, Al-Arawe N, Hinterseher I. The Role of the Gut Microbiome and Trimethylamine Oxide in Atherosclerosis and Age-Related Disease. Int J Mol Sci. 2023;24(3):2399. doi:10.3390/ijms2403239974. Jin Q, Zhang C, Chen R, et al. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. J Transl Med. 2024;22(1):352. doi:10.1186/s12967-024-05120-y75. Zhu B, Ren H, Xie F, An Y, Wang Y, Tan Y. Trimethylamine N-Oxide Generated by the Gut Microbiota: Potential Atherosclerosis Treatment Strategies. Curr Pharm Des. 2022;28(35):2914-2919. doi:10.2174/138161282866622091908501976. Guo D, Shen Y, Li W, Li Q, Miao Y, Zhong Y. Upregulation of flavin-containing monooxygenase 3 mimics calorie restriction to retard liver aging by inducing autophagy. Aging. 2020;12(1):931-944. doi:10.18632/aging.10266677. Zhu W, Buffa JA, Wang Z, et al. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N‐oxide‐generating pathway, modulates platelet responsiveness and thrombosis risk. Journal of Thrombosis and Haemostasis. 2018;16(9):1857-1872. doi:10.1111/jth.1423478. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242-249. doi:10.1038/nature1155279. Qi S, Luo X, Liu S, Ling B, Jin H. The Critical Effect of Bile Acids in Atherosclerosis. J Cardiovasc Pharmacol. 2022;80(4):562-573. doi:10.1097/FJC.000000000000132080. Chiang JYL, Ferrell JM. Bile acid receptors FXR and TGR5 signaling in fatty liver diseases and therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2020;318(3):G554-G573. doi:10.1152/ajpgi.00223.201981. Gorabi AM, Kiaie N, Khosrojerdi A, et al. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med. 2022;32(8):525-533. doi:10.1016/j.tcm.2021.08.01582. Doherty TM, Shah PK, Arditi M. Lipopolysaccharide, Toll-Like Receptors, and the Immune Contribution to Atherosclerosis. Arterioscler Thromb Vasc Biol. 2005;25(5). doi:10.1161/01.ATV.0000161318.83751.0883. Suzuki K, Susaki EA, Nagaoka I. Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci. 2022;23(19):11148. doi:10.3390/ijms23191114884. Wang H, Fu H, Zhu R, et al. BRD4 contributes to LPS-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. Aging. 2020;12(10):9240-9259. doi:10.18632/aging.10320085. Suzuki K, Susaki EA, Nagaoka I. Lipopolysaccharides and Cellular Senescence: Involvement in Atherosclerosis. Int J Mol Sci. 2022;23(19):11148. doi:10.3390/ijms23191114886. Khovidhunkit W, Moser AH, Shigenaga JK, et al. Regulation of Scavenger Receptor Class B Type I in Hamster Liver and Hep3B Cells by Endotoxin and Cytokines. Vol 42.; 2001.87. Ziółkiewicz A, Kasprzak-Drozd K, Rusinek R, Markut-Miotła E, Oniszczuk A. The Influence of Polyphenols on Atherosclerosis Development. Int J Mol Sci. 2023;24(8):7146. doi:10.3390/ijms2408714688. Sorrenti V, Ali S, Mancin L, Davinelli S, Paoli A, Scapagnini G. Cocoa Polyphenols and Gut Microbiota Interplay: Bioavailability, Prebiotic Effect, and Impact on Human Health. Nutrients. 2020;12(7):1908. doi:10.3390/nu1207190889. Theofilis P, Oikonomou E, Chasikidis C, Tsioufis K, Tousoulis D. Inflammasomes in Atherosclerosis—From Pathophysiology to Treatment. Pharmaceuticals. 2023;16(9):1211. doi:10.3390/ph1609121190. Al-Hawary SIS, Jasim SA, Romero-Parra RM, et al. NLRP3 inflammasome pathway in atherosclerosis: Focusing on the therapeutic potential of non-coding RNAs. Pathol Res Pract. 2023;246:154490. doi:10.1016/j.prp.2023.15449091. Paeslack N, Mimmler M, Becker S, et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 2022;54(10):1339-1356. doi:10.1007/s00726-022-03161-592. Zhai T, Wang P, Hu X, Zheng L. Probiotics Bring New Hope for Atherosclerosis Prevention and Treatment. Oxid Med Cell Longev. 2022;2022:1-13. doi:10.1155/2022/390083593. Wu H, Chiou J. Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients. 2021;13(8):2878. doi:10.3390/nu1308287894. Kim ES, Yoon BH, Lee SM, et al. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp Mol Med. 2022;54(2):103-114. doi:10.1038/s12276-022-00728-w95. Cao H, Zhu Y, Hu G, Zhang Q, Zheng L. Gut microbiome and metabolites, the future direction of diagnosis and treatment of atherosclerosis? Pharmacol Res. 2023;187:106586. doi:10.1016/j.phrs.2022.106586